

Beluga/Harpoon user’s manual

Beluga is a language for encoding and reasoning about formal systems specified
by inference rules, e.g. lambda calculi and type systems. It uses contextual
modal logic as its foundation.
Object-language binding constructs are encoded using higher-order abstract
syntax. That is, functions are used to encode binders.
Terms are paired with the contexts in which they are meaningful to form
contextual objects, enabling reasoning about open terms.
Proofs in Beluga are represented by recursive programs according to the
Curry-Howard correspondence.

Harpoon is an interactive proof development REPL built on top of Beluga. Users
develop proofs by successively eliminating subgoals using a small, fixed set of
tactics. Behind the scenes, the execution of tactics builds a proof script that
can be machine-translated into a traditional Beluga program.

The Beluga project is developed at the Complogic group at McGill university, led
by Professor Brigitte Pientka. It is implemented in OCaml.

	Getting Started
	Installation

	Harpoon Example

	Common elements
	The Logical Framework LF

	Contextual LF

	LF Subordination

	Inductive Types (stub)

	Interactive Proving with Harpoon
	Prover Structure

	Proof automation

	Interactive Command Reference

	Undo

Funding

This research has been funded through: NSERC (Natural Science and Engineering
Research Council), FQRNT Recherche d’Equipe, PSR-SIIRI Projets conjoints de
recherche et d’innovation and 63e session de la Commission permanente de
coopération franco-québécoise by Ministère du Développement économique, de
l’Innovation et de l’Exportation au Quebec.

Search Page

Getting Started

Installation

We support only installation on macOS, Linux, and WSL.

Any of the following methods uses opam 2. Please ensure
that you have that version of opam. You can find the installation
instruction here [https://opam.ocaml.org/doc/Install.html].

We use recent versions of OCaml, so check which are supported on our
continuous integration [https://github.com/Beluga-lang/Beluga/actions]
before creating an opam switch.

Install using opam

The following command will install beluga under the switch you created.

opam install beluga

Now beluga and harpoon binaries are installed in $OPAM_SWITCH_PREFIX/bin,
and these command work:

beluga --help
harpoon --help

Install from the source

First, clone the repository.

git clone https://github.com/Beluga-lang/Beluga
cd Beluga

Now, build the source with the following commands:

make setup-install
make install

This will place beluga and harpoon binaries in $OPAM_SWITCH_PREFIX/bin.
They can be copied wherever you like, or you can add this directory to your PATH environment variable.

Harpoon Example

You can try the following example to check Harpoon works:

LF tp : type =
 | i : tp
 | arr : tp -> tp -> tp
;

LF eq : tp -> tp -> type =
 | eq_i : eq i i
 | eq_arr : eq A1 A2 -> eq B1 B2 -> eq (arr A1 B1) (arr A2 B2)
;

First, save this code as a file tp-refl.bel. Next, run the following command to load the Harpoon session.

harpoon --sig tp-refl.bel

Here, --sig option represents a signature used for proofs. Now, Harpoon will print a session wizard:

Type Reconstruction begin: tp-refl.bel
Type Reconstruction done: tp-refl.bel
Configuring theorem #1
 Name of theorem (:quit or empty to finish):

The session wizard will ask for the name of theorem, the actual statement, and the induction order. After giving tp-refl, {A : [|- tp]} [|- eq A A], and 1, the session wizard will print this:

Type Reconstruction begin: stlc.bel
Type Reconstruction done: stlc.bel
Configuring theorem #1
 Name of theorem (:quit or empty to finish): halts_step
 Statement of theorem: [|- step M M'] -> [|- halts M'] -> [|- halts M]
 Induction order (empty for none):
Configuring theorem #2
 Name of theorem (:quit or empty to finish):

Users can give any numbers of theorems they want. Here, for the purpose of this example, we will finish the session wizard, by typing the enter key. Then, Harpoon will display an interactive session:

Assumptions
 Meta-assumptions:
 A : (|- tp)
are automatically introduced for the subgoal of type
 {A : (|- tp)} [|- eq A A]

Theorem: tp-refl
intros
Meta-context:
 A : (|- tp)
Computational context:

--
[|- eq A A]

>

Now we can use interactive tactics to prove the goal (the type under the line). First, by applying split [|- A], we split the type into cases.

Theorem: tp-refl
intros
Meta-context:
 A : (|- tp)
Computational context:

--
[|- eq A A]

> split [|- A]

This will generate two subgoals, and you will notice that the label (the string on the second line) is changed so that we can see which subgoal we are in.

Theorem: tp-refl
intros <- split [|- X1] (case arr)
Meta-context:
 X : (|- tp)
 X1 : (|- tp)
Computational context:

--
[|- eq (arr X X1) (arr X X1)]

>

To prove this, we need [|- eq X X] and [|- eq X1 X1]. We can get these by induction.

Theorem: tp-refl
intros <- split [|- X1] (case arr)
Meta-context:
 X : (|- tp)
 X1 : (|- tp)
Computational context:

--
[|- eq (arr X X1) (arr X X1)]

> by tp-refl [|- X] as EQ_X unboxed

Theorem: tp-refl
intros <- split [|- X1] (case arr)
Meta-context:
 X : (|- tp)
 X1 : (|- tp)
 EQ_X : (|- eq X X)
Computational context:

--
[|- eq (arr X X1) (arr X X1)]

> by tp-refl [|- X1] as EQ_X1 unboxed

With these two, we are able to use eq_arr.

Theorem: tp-refl
intros <- split [|- X1] (case arr)
Meta-context:
 X : (|- tp)
 X1 : (|- tp)
 EQ_X : (|- eq X X)
 EQ_X1 : (|- eq X1 X1)
Computational context:

--
[|- eq (arr X X1) (arr X X1)]

> solve [|- eq_arr EQ_X EQ_X1]

This will solve the subgoal, and Harpoon will subsequently show the next case, which can be solved directly with eq_i.

Theorem: tp-refl
intros <- split [|- FREE MVar 1] (case i)
Meta-context:

Computational context:

--
[|- eq i i]

> solve [|- eq_i]

After solving all subgoals, Harpoon will print the proof script as well as its translation as a Beluga program, and save the proof script (You can check it by cat tp-refl.bel) and type-check the signature file again.

Subproof complete! (No subgoals left.)
Full proof script:
 intros
 { A : (|- tp)
 |
 ; split [|- A] as
 case arr:
 { X : (|- tp), X1 : (|- tp)
 |
 ; by tp-refl [|- X] as EQ_Y unboxed;
 by tp-refl [|- X1] as EQ_X unboxed;
 solve [|- eq_arr EQ_Y EQ_X]
 }
 case i:
 {
 |
 ; solve [|- eq_i]
 }
 }
Translation generated program:
 mlam A =>
 case [|- A] of
 | [|- arr X X1] =>
 let [|- EQ_Y] = tp-refl [|- X] in
 let [|- EQ_X] = tp-refl [|- X1] in [|- eq_arr EQ_Y EQ_X]
 | [|- i] =>
 [|- eq_i]

No theorems left. Checking translated proofs.
- Translated proofs successfully checked.
Proof complete! (No theorems left.)
Type Reconstruction begin: t/harpoon/tp-refl.bel
Type Reconstruction done: t/harpoon/tp-refl.bel

Once the proof is completed, Harpoon will restart the session wizard, and we can choose whether to prove more theorems or :quit.

Configuring theorem #1
 Name of theorem (:quit or empty to finish): :quit
Harpoon terminated.

That’s it! If you want to know more details including how to write the signature file and what kinds of tactics do we provide, please read the common elements and interactive proving with harpoon section of this page. For additional examples, you can check out the test directory [https://github.com/Beluga-lang/Beluga/tree/master/t] in our github repository [https://github.com/Beluga-lang/Beluga].

Common elements

	The Logical Framework LF

	Contextual LF

	LF Subordination

	Inductive Types (stub)

The Logical Framework LF

Languages are encoded for study in Beluga using the Logical Framework LF 1.
New syntactic categories are defined using the LF toplevel definition, which
defines a new LF (indexed) type together with its constructors.

Basic example: natural numbers

LF nat : type =
 | zero : nat
 | succ : nat -> nat
;

The first line defines a new simple LF type nat and the following lines
define its constructors, zero and succ. The number three is written
succ (succ (succ zero)) in this encoding.

One can define relations on natural numbers by defining indexed types. For
example, we can encode a less-than-equals relation on nat as follows.

LF le : nat -> nat -> type =
 | le_z : le zero N
 | le_s : le N M ->
 % ------------------
 le (succ N) (succ M)
;

Terms of this type encode proofs. As a concrete example, a term of type
le (succ zero) (succ (succ zero)) would represent a proof that 1 is less
than 2.

First, observe the presence of free variables M and N.
Any free variable is automatically Pi-quantified at the very front of the
constructor being defined. Thus, the internal type of le_s is really
{N : nat} {M : nat} le N M -> le (succ N) (succ M).
(Beluga uses curly braces to write Pi-types.)
We call such automatically quantified variables implicit parameters. The
types of implicit parameters are determined by type reconstruction. It is not
possible for the user to explicitly provide an instantiation for an implicit
parameter. Instantiations for implicit parameters are automatically found via
unification, based on the types of provided arguments.
In other words, when one writes a term le_s Q for some argument proof Q,
it is via the type of Q that the instantiations for N and M are
found.

Next, the rule le_s has been suggestively written with a commented line to
illustrate that one would ordinarily write this as an inference rule. In Beluga,
we use LF declarations to uniformly represent the syntax and the inference
rules of object languages.
(Semantic predicates about encodings are defined using Inductive Types.)

One can state a theorem about such an encoding using Contextual LF and
one can prove them by writing a functional program or
interactively.

HOAS example: lambda calculus

Beluga is a domain-specific language for reasoning about formal systems, and one
of the simplest such systems is the lambda calculus. Unlike in the natural
numbers, lambda-terms contain binders. The philosophy of LF is to represent
binders using higher-order abstract syntax (HOAS). That is, the functions
of the metalanguage (LF) are used to represent the binding structure of the
object-language (lambda calculus). Here is how we define untyped lambda terms
using HOAS.

LF tm : type =
 | lam : (tm -> tm) -> tm
 | app : tm -> tm -> tm
;

One immense benefit of HOAS is that the object-language inherits the
substitution properties of the metalanguage. In practice, this means that one
needs not define substitution, but rather simply use LF function
application. For example, consider the following encoding of a small-step,
call-by-name operational semantics for the lambda calculus.

LF step : tm -> tm -> type =
 | e_app : step M M' ->
 % -----------------------
 step (app M N) (app M' N)

 | beta : step (app (lam M) N) (M N)
;

First, observe that step is not a simple type. It is indexed by two terms,
so we understand it as a binary relation between terms.

Finally, the rule beta demonstrates HOAS in action. We use LF function
application to implement the beta reduction of the lambda calculus. The type of
the variable M in this constructor is inferred by type reconstruction as
tm -> tm, given that it appears as the first argument to the constructor
lam.

To complete the example encoding of the lambda calculus, we will now turn our
attention to a simple type assignment system for this language. First, we will
define the syntax of types.

LF tp : type =
 | base : tp
 | arr : tp -> tp -> tp
;

Second, we define the typing judgment as an indexed type.
In this case, we understand oft as relating a term tm to a type tp.

LF oft : tm -> tp -> type =
 | t_app : oft M (arr A B) -> oft N A ->
 % ---------------------------
 oft (app M N) B

 | t_lam : ({x : tm} oft x A -> oft (M x) B) ->
 % ----------------------------------
 oft (lam M) (arr A B)
;

We will concentrate on the rule t_lam. Here, the variable M is
understood as the body of the lambda-abstraction, and it has type tm -> tm.
The premise of this rule reads “for any term x, if x is of type
A, then M x is of type B”. This precisely captures the parametric
reasoning used on paper when proving that a lambda-abstract has an arrow-type.
Here it is necessary to explicitly write a Pi-type for x as leaving it
implicit would have it incorrect quantified at the level above.

To reason about these definitions, one would formulate a theorem and prove it.
Theorems are stated and proven in Beluga’s computation language. Whereas LF is
used as a metalanguage for encoding various formal systems, Beluga’s computation
language is used as a metalanguage for Contextual LF.
To prove a theorem, one
either writes a functional program in Beluga or
uses Harpoon.

	1

	TODO cite LF paper

Contextual LF

In contrast with languages such as Coq or Agda that feature full dependent
types, Beluga has an indexed type system. This is a restricted form of
dependent types in which one quantifies only over a specific index
domain. The index domain of Beluga is Contextual LF.

At a high level, a Contextual LF object (or type) is an LF term (or type)
together with an LF context in which the term (or type) makes sense.
For example, consider the following syntax of types for the simply-typed lambda
calculus together with a structural equality relation on types.

LF tp : type =
 | base : tp
 | arr : tp -> tp -> tp
;

LF eq : tp -> tp -> type =
 | eq_base : eq base base
 | eq_arr : eq A1 A2 -> eq B1 B2 ->
 % ------------------------
 eq (arr A1 B1) (arr A2 B2)
;

The contextual object that encodes a closed proof that the base type is
equal to the base type is |- eq_base. We write this sometimes with
parentheses to make reading easier, e.g. (|- eq_base).

Open terms can be represented by using a nonempty LF context. For example,

x : eq A B |- eq_arr x eq_base

is a contextual object of type x : eq A B |- eq (arr A base) (arr B base).

Computation types

Contextual LF objects and types may be boxed into computation types. These
types are primarily used for encoding theorems about a formal system.
For example, the type of a theorem expressing that equality is reflexive would
be

{A : |- tp} [|- eq A A]

We read this as “for all (closed) types A , A is equal to itself.”
This is a computation type. It is composed of two parts in this example: a
PiBox-type and a box-type. The PiBox is used as a quantifier; we will go
into more depth on this in the following section.
The syntax [|- eq A A] is a boxed contextual type: any contextual type may
be surrounded by a box [] to embed it as a base computation type.
Similarly, contextual objects may be boxed to form computation expressions.

Another example theorem trans, that equality is transitive, can be expressed
as

[|- eq A B] -> [|- eq B C] -> [|- eq A C]

Similar to in a pure LF type (see here), free metavariables
appearing in a computation type are automatically abstracted over using PiBox at
the front. So really, the above example type is elaborated into

{A : |- tp} {B : |- tp} {C : |- tp}
[|- eq A B] -> [|- eq B C] -> [|- eq A C]

But again as in a pure LF type, these quantifiers are implicit and there is no
way for a programmer to explicitly supply an instantiation for them. The
instantiations are found when the theorem trans is used.

This example illustrates the simple function space, written with the arrow
->. In Beluga, the dependent function space (using the PiBox syntax)
is separate from the simple function space (using the arrow syntax).

To recap, the formal grammar of computation types is the following.

where B denotes an inductive type and U denotes a
contextual type. The remaining two forms are the simple and dependent function
space, respectively.

Metavariables

The syntax {A : |- tp} ... expresses what’s called a PiBox-type. This
example quantifies over the contextual type |- tp and binds A as a
metavariable. Whenever a metavariable is used, as A is used for example
in eq A A, it is given a substitution. This substitution mediates between
the LF context of the metavariable and the LF context at the use site. If no
explicit substitution is provided, an identity substitution is assumed. An
identity substitution is sufficient in the example because the context of both
the metavariable and its use site is the empty context.

For example, suppose we have the metavariable X : (x : tm, y : tm |-
tp). (Perhaps X refers to x, y |- arr x y.) Then, X[base, base] : |-
tp. Here we use an explicit substitution to instantiate the bound variables
x and y.

Context variables and schemas

Beluga provides a mechanism for abstracting over and quantifying over
contexts. An abstract context is referred to by a context variable. A context
variable is a special form of metavariable.

Whereas kinds classify types, contexts are classified by schemas. A
schema essentially lists the possible types of the variables occurring in the
context. The following declaration defines a schema ctx that can contain
only types.

schema ctx = tp;

Before we can elaborate an example demonstrating context variables, first
consider the following syntax of terms for the simply typed lambda calculus as
well as a typing judgment for this language.

LF tm : type =
 | app : tm -> tm -> tm
 | lam : tp -> (tm -> tm) -> tm
;

LF oft : tm -> tp -> type =
 | t_app : oft M (arr A B) -> oft N A ->
 % ---------------------------
 oft (app M N) B

 | t_lam : ({x : tm} oft x A -> oft (M x) B) ->
 % ----------------------------------
 oft (lam A M) (arr A B)

This syntax of terms includes a type annotation on lambda abstractions, and the
typing judgment ensures that it is the type given in the annotation that is used
as the parameter x’s type in the premise of the t_lam rule.

This language admits type uniqueness. That is, given two
typing derivations for the same term, the types assigned to that term must be
equal. We can state this theorem as a computation type in Beluga as follows.

(g : ctx) [g |- oft M A1[]] -> [g |- oft M A2[]] -> [|- eq A1 A2]

First, notice the syntax (g : ctx) This is called implicit context
quantification.
Unlike for ordinary implicit metavariables such as M, the
schema of an implicit context variable cannot be inferred by type
reconstruction. Therefore, one must use implicit context quantification to
explicitly specify the schema of the context variable.

Second, notice that the metavariables A1 and A2, referring to types, are
associated with the substitution [] in the assumptions of the theorem. Type
reconstruction is in some sense a greedy algorithm, so had these substitutions
been left out, the type of A1, upon appearing in g |- oft M A1, would be
g |- tp. But this makes no sense because types ought to be closed in the
simply-typed lambda calculus. To specify that the metavariables A1 and
A2 must be closed, we associate them with a weakening substitution
[]. This way, type reconstruction will correct infer that the context of
these metavariables is empty.

Confusingly, the reported error had the weakening substitutions been omitted
would be relating to the occurrences of A1 and A2 in |- eq A1
A2. Here, the implicit identity substitution would be ill-typed. Recall that
the type of A1, for instance, would have been inferred as g |- tp and
the identity subsitution would need to send the metavariable’s context g to
the empty context, which it does not. In general, when dealing with ill-typed
substitution errors, it is worth paying close attention to every occurrence of
any relevant metavariables.

Unboxing

When one has a computational variable referring of a boxed contextual type, one
frequently likes to promote this variable to a metavariable. This process is
called unboxing.
For example, suppose we have the assumption x : [|- tp].

	In Beluga, one writes let [_ |- X] = x in ... in order to unbox x as the
metavariable X.

	In Harpoon, one uses the unbox tactic for this: unbox x as X.

LF Subordination

LF declarations in Beluga may or may not refer to earlier declarations.
Therefore, it is possible to ascertain that certain derivations cannot depend on
certain contextual assumptions, and to eliminate these assumptions. As a
concrete example, consider this signature.

LF unit1 : type =
 | u1 : unit1
;

LF unit2 : type =
 | u2 : unit2
;

schema ctx = block a1 : unit1, a2 : unit2 ;

The schema ctx consists of blocks (pairs) consisting of a unit1 and a
unit2. Now suppose we have a derivation of type
g, b : block a1 : unit1, a2 : unit2 |- unit1 where g : ctx.
This derivation builds a unit1, and by looking at the definition of that
type, we can see that there is no way any unit2 could be involved in the
construction of that derivation.

Strengthening

Beluga recognizes as legitimate any program that would drop such irrelevant
assumptions: this is called strengthening.
In Harpoon this is accomplished by using the strengthen tactic. In a Beluga program, one uses pattern matching together with
an explicit substitution that witnesses the strengthening. Suppose in the below
example that x : [g, b : block a1 : unit1, a2 : unit2 |- unit1]. To
strengthen this, one would use a construction as follows.

let [g, b : block a1 : unit1, a2 : unit2 |- X[.., b.1]] = x in ...

The synthesized type for X would be g, x1 : unit1 |- unit1. This is
somewhat confusing because the substitution that witnesses the strengthening
here is in fact a substitution that weakens X.

Beluga’s subordination analysis over the loaded signature accounts for
transitive dependencies between LF declarations. Beluga will consider
strengthening notably during coverage checking as well as when synthesizing the
type of unknowns, written as _ in LF terms.

Inductive Types

Attention

This page is a stub.

Interactive Proving with Harpoon

Harpoon is an interactive prover for Beluga. Users of Harpoon develop proofs in
a REPL using a small set of built-in tactics. These correspond to the main proof
strategies one uses in developing metatheory proofs, e.g. inversion or appeal to
a lemma or induction hypothesis.

	Prover Structure
	Session

	Subgoal

	Proof automation
	auto-intros

	auto-solve-trivial

	auto-invert-solve

	inductive-auto-solve

	Interactive Command Reference
	Administrative tactics

	Proof tactics

	auto-invert-solve

	inductive-auto-solve

	Undo
	Limitations

Prover Structure

Harpoon is structured in a hierarchical fashion: the prover
maintains a number of sessions, each contains a number of
theorems, each of which contains a number of subgoals.
A theorem with no subgoals remaining is complete, and
similarly, a session with no theorems remaining is complete.

Session

Harpoon organizes a set of mutually inductive theorems into a session. Often,
there is only one session at a time in Harpoon, but more than one simultaneous
session is possible. For example, you might want to start a second session if
you decide to prove a lemma while in the middle of another proof.

Changing sessions

One can switch between theorems by using the select
command. Selecting a theorem belonging to another session will cause a session
switch, which is a somewhat delicate process.

In order to prevent incomplete theorems in different sessions from referring to
each other, all theorems belonging to other sessions are not in scope. When
switching sessions, the theorems in the active session are moved out of scope,
and the theorems in the destination session are brought into scope.
Crucially, this is to prevent undesirable circularities between theorems.

It is important to be aware of this limitation, as it means that lemmas must be
proven before they can be used.

Session configuration wizard

The series of interactive prompts that appear when Harpoon is started is called
the session configuration wizard. This wizard appears when there are no
sessions in the prover, and unless there were incomplete proofs in the loaded
signature, there will be no sessions when Harpoon starts.

The wizard prompts for three things about each theorem:

	The name of the theorem. This is how the theorem is referred to for induction
hypotheses, and how other theorems can refer to this theorem.

	The statement of the theorem. This is a Beluga computational type.
(See Contextual LF.)

	The induction order of the theorem. Non-inductive theorems can simply leave
this blank. Inductive theorems specify the order numerically, by giving the
position of the parameter to induct on. Only explicit parameters are counted,
and counting proceeds from left to right.

Note

Implicit context quantifiers are not counted for the
numeric induction order. That is, in

(g : ctx) [g |- oft M A] -> [g |- step M M'] -> [g |- oft M' A]

the position of the parameter of type [g |- step M M'] is still 2.

For example, here is how one might configure a type preservation proof for the
simply-typed lambda calculus.

Name of theorem: tps
Statement of theorem: [|- oft M A] -> [|- step M M'] -> [|- oft M' A]
Induction order: 2

Once a theorem is configured, the wizard will repeat so you can configure
additional theorems to be proven mutually. To end the wizard, use an empty
theorem name or the special name :quit. Ending the wizard without
configuring any theorems will abort the creation of the new session. If there
are no other sessions in Harpoon, then Harpoon will exit.

Loading goals from a file

Harpoon proofs are recorded into signature files as a proof script. This is a
structured language whose core constructs close resembles the syntax of
Proof tactics, which the following section in this document will describe.
In a signature file, a proof named foo is declared as follows.

proof foo : tau = P;

where tau is a computation type and P is the body of the proof.

However, when a proof script is saved back using session commands,
this P contains some subgoals left. When harpoon loads a signature file with
such incomplete proofs, harpoon will load the proofs into a session so that a user doesn’t
need to repeat the session wizard. It is still possible to open the session wizard using
session commands in a case when a user want to use it to start
a new proof.

Subgoal

Proofs are developed by applying a tactic to a subgoal. If the tactic is
successful, the subgoal it is applied to is solved and removed from its
theorem. New subgoals may be introduced by the tactic. These subgoals are
understood as children of the subgoal that was eliminated.

Subgoal prompt

To apply a tactic, one types the corresponding command into the subgoal
prompt. This prompt is the main point of interaction with Harpoon. Consider
this example subgoal prompt from the beginning of a type preservation proof for
the simply-typed lambda calculus.

intros
Meta-context:
 M : (|- tm) (not in scope)
 A : (|- tp) (not in scope)
 M' : (|- tm) (not in scope)
Computational context:
 x : [|- oft M A]
 x1 : [|- step M M']

[|- oft M' A]

>

The subgoal prompt shows the prover state at the subgoal. This state contains
three key pieces of information.

	The subgoal label. Every subgoal in Harpoon is identified by a subgoal
label. This label indicates where in the proof this subgoal is located. In
the example, the label is intros at the very top,
and demonstrates that this subgoal is right after having introduced the
assumptions of the theorem.

	The contexts. Harpoon uses Beluga’s
indexed type system in which one
distinguishes between metavariables and computational
variables. Metavariables belong to the meta-context and computational
variables belong to the computational context. Notice that the metavariables
in the example are all marked (not in scope). This
annotation is presented for implicit parameters: recall that in the statement
of the theorem, the parameters M, A and M' appeared free.

	The goal. Below the line, the type of the subgoal appears. As tactics are
applied and new subgoals are introduced, one can expect the goal type to
change. Broadly speaking, one’s objective is to construct a term of this
type.

Administrative tactics

There are a number of tactics in Harpoon that do not contribute directly to the
development of the proof, but are used to manipulate the state of the
prover. To distinguish these from the proof tactics, we call these
administrative tactics. Despite not contributing to the development of the
proof, administrative tactics are nonetheless entered into the subgoal prompt.

See here for the complete list of
administrative tactics.

Proof automation

Harpoon provides rudimentary automation for basic tasks during proofs.
Each automation type can be controlled via the toggle-automation
tactic.

Automations run at the moment that a new subgoal is created.

Actions performed by automatic tactics can be undone.

auto-intros

This automation introduces assumptions into the context whenever the subgoal has
a function type.

auto-solve-trivial

This automation solves subgoals in which the context contains an assumption
whose type is convertible with goal type.

It will never solve the last remaining subgoal in a theorem, as this makes
certain theorems impossible to prove using Harpoon. For example, this is
essential for implementing a function such as double : [|- nat] -> [|- nat]:
auto-intros will bring x : [|- nat] into the context and
auto-solve-trivial would immediately finish the theorem before the user ever
sees a subgoal prompt.

actions capabilities.

	Current limitations:

	
	no paramater variables

	no substitution variables

	no case splits (>1 case produced)

	no pair type

	no splitting on contexts

auto-invert-solve

This automation attempts to solve the subgoal if no variable splitting (other than inversions) is required to solve
the goal. It performs 2 iterations of depth-first proof-search, once on the computation level, and
once again on the LF level. Use auto-invert-solve INT to specify the maximum depth
you want your search tree to reach. Depth is incremented when we attempt to
solve a subgoal.

For example, if we want to solve Ev [|- S (S (S (S z)))] this would require
a depth bound of at least 2::

inductive Ev : [⊢ nat] → ctype =
| ZEv : Ev [⊢ z]
| SEv : Ev [⊢ N] → Ev [⊢ S (S N)]

depth = 0
solve for Ev [|- S (S (S (S z)))] -> focus on SEv --->

depth = 1
solve for Ev [|- S (S z)] -> focus on SEv --->

depth = 2
solve for Ev [|- z] -> focus on zEv

Note: If a goal has more than one subgoal, depth only increments by 1.

For example, if we want to solve ``Less_Than [|- S z] [|- S (S (S z))]`` this
would require depth bound of 3:

inductive Less_Than : [⊢ nat] → [⊢ nat] → ctype =
| ZLT : Less_Than [⊢ z] [⊢ S N]
| LT : Less_Than [⊢ N] [⊢ M] → Less_Than [⊢ S N] [⊢ S M]
| Trans_LT : Less_Than [⊢ N] [⊢ M]
 → Less_Than [⊢ M] [⊢ K] → Less_Than [⊢ N] [⊢ K]

depth = 0
solve for Less_Than [|- S z] [|- S (S (S z))] -> focus on Trans_LT --->

 depth = 1
 solve for Less_Than [|- M] [|- S (S (S z))] -> focus on LT --->

 depth = 2
 solve for Less_Than [|- M'] [|- S (S z)] -> focus on LT --->

 depth = 3
 solve for Less_Than [|- M''] [|- S z] -> focus on ZLT

 ---> found LT LT ZLT : Less_Than [|- S (S z)] [|- S (S (S z))]

 depth = 1
 solve for Less_Than [|- S z] [|- S (S z)] -> focus on LT --->

 depth = 2
 solve for Less_Than [|- z] [|- S z] -> focus on ZLT

 ---> found LT ZLT : Less_Than [|- S z] [|- S (S z)]

-> found Trans_LT (LT ZLT) (LT LT ZLT) : Less_Than [|- S z] [|- S (S (S z))]

inductive-auto-solve

This automation will perform a case split on the user-specified variable then call auto-invert-solve on each sub case. Use inductive-auto-solve INT to specify the maximum depth you want your search tree to reach. Depth is incremented as above.

Interactive Command Reference

	Administrative tactics

	undo

	redo

	history

	theorem list

	theorem defer

	theorem show-ihs

	theorem dump-proof PATH

	theorem show-proof

	session list

	session defer

	session create

	session serialize

	save

	subgoal list

	subgoal defer

	select

	rename

	toggle-automation

	type

	info

	Proof tactics

	intros

	split

	msplit

	invert

	impossible

	by

	unbox

	strengthen

	solve

	suffices

	auto-invert-solve

	inductive-auto-solve

Administrative tactics

Administrative tactics are used to navigate the proof, obtain information about
functions or constructors, or to prove a lemma in the middle of another proof.

undo

Undoes the effect of a previous proof tactic.
See Undo.

redo

Undoes the effect of a previous undo.
See Undo.

history

Displays the undo history. See Undo.

theorem list

Lists all theorems in the current session.

theorem defer

Moves the current theorem to the bottom of the theorem stack, selecting the next
theorem.

See select for a more flexible way to select a theorem.

theorem show-ihs

Display the induction hypotheses available in the current subgoal.

Note

This is a debugging command, and the output is not particularly
human-readable.

theorem dump-proof PATH

Records the current theorem’s partial proof to PATH.

theorem show-proof

Displays the current theorem’s partial proof.

session list

Lists all active sessions together with all theorems within each session.

session defer

Moves the current session to the bottom of the session stack and selects the
next one.

See select for a more flexible way to select a theorem.

session create

Creates a new session. This command will start the Session configuration wizard for setting up the theorems in the new session.

session serialize

Saves the current session as partial proofs to the signature.
In other words, any work done interactively will be reflected back into the
loaded signature.

save

This command is a shortcut for session serialize.

subgoal list

Lists all remaining subgoals in the current theorem.

subgoal defer

Moves the current subgoal to the bottom of the subgoal stack and selects the
next one.

select

select NAME selects a theorem by name for proving.
See the session list command.

Note

When selecting a theorem from another session, be aware of the consequences
this has on scoping. See Changing sessions.

rename

Note

Renaming is poorly supported at the moment.

The resulting Harpoon proof script that is generated by interactive proving
will not contain the renaming, and this could lead to accidental variable
capture.

Renames a variable. Use rename meta SRC DST to rename a metavariable and
rename comp SRC DST to rename a program variable.

toggle-automation

Use toggle-automation AUTO [STATE] to change the state of proof automation
features. See Proof automation for available values for AUTO.

Valid values for STATE are on, off, and toggle. If unspecified,
STATE defaults to toggle.

type

Use type EXP to display the computed type of the given synthesizable
expression EXP.

info

Use info KIND OBJ to get information on the KIND named OBJ.

Valid values for KIND are

	theorem: displays information about the Beluga program or Harpoon proof
named OBJ.

Proof tactics

intros

Use intros [NAME...] to introduce assumptions into the context.

Restrictions:

	The current goal type is either a simple or dependent function type.

For Pi-types, the name of the assumption matches the name used in the Pi. For
arrow-types, names will be taken from the given list of names, in order. If no
names are given explicitly, then names are automatically generated.

On success, this tactic will replace the current subgoal with a new subgoal in
which the assumptions are in the context.

Note

It is uncommon to use this tactic directly due to
automation.

split

Use split EXP to perform case analysis on the synthesizable expression EXP.

Restrictions:

	The expression EXP and its synthesized type may not contain uninstantiated
metavariables.

On success, this tactic removes the current subgoal and introduces a new subgoal
for every possible constructor for EXP.

msplit

Use msplit MVAR to perform case analysis on the metavariable MVAR.

This command is syntactic sugar for split [_ |- MVAR].

invert

Use invert EXP to perform inversion on the synthesizable expression
EXP.
This is the same as using split EXP, but invert will check that a unique
case is produced.

impossible

Use impossible EXP to eliminate the uninhabited type of the synthesizable
expression EXP.
This is the same as using split EXP, but impossible will check that zero
cases are produced.

by

Use by EXP as VAR [MODIFIER] to invoke a lemma or induction hypothesis
represented by the synthesizable expression EXP and bind the result to the
name VAR.
The optional parameter MODIFIER specifies at what level the binding occurs.

Valid values for MODIFIER are

	boxed (default): the binding is made as a computational variable.

	unboxed: the binding is made as a metavariable.

	strengthened: the binding is made as a metavariable, and its context is
strengthened according to LF Subordination.

Restrictions:

	The defined variable VAR must not already be in scope.

	EXP and its synthesized type may not contain uninstantiated metavariables.

	(For unboxed and strengthened only.) The synthesized type must be a
boxed contextual object.

On success, this tactic replaces the current subgoal with a subgoal having one
additional entry in the appropriate context.

Tip

LF terms whose contexts contain blocks are not in principle eligible for
strengthening. But such a context is equivalent to a flat context, and
Beluga will automatically flatten any blocks when strengthening.
Therefore, strengthened has a secondary use for flattening.

unbox

The command unbox EXP as X is syntactic sugar for by EXP as X unboxed.
See also by.

strengthen

The command strengthen EXP as X is syntactic sugar for by EXP as X
strengthened.
See also by.

solve

Use solve EXP to complete the proof by providing an explicit checkable
expression EXP.

Restrictions:

	The expression EXP must check against the current subgoal’s type.

On success, this tactic removes the current subgoal, introducing no new
subgoals.

suffices

Use suffices by EXP toshow TAU... to reason backwards via the synthesizable
expression EXP by constructing proofs for each type annotation TAU.

This command captures the common situation when a lemma or computational
constructor can be used to complete a proof, because its conclusion is
(unifiable with) the subgoal’s type. In this case, it suffices to construct
the arguments to the lemma or constructor.

The main restriction on suffices is that the expression EXP must
synthesize a type of the form

{X1 : U1} ... {Xn : Un} tau_1 -> ... -> tau_k -> tau

Thankfully, this is the most common form of type one sees when working with
Beluga.

Restrictions:

	The expression EXP must synthesize a compatible type, as above.

	Its target type tau must unify with the current goal type.

	Each type tau_i must unify with the i th type annotation given in the
command.

	After unification, there must remain no uninstantiated metavariables.

Tip

Sometimes, not all the type annotations are necesary to pin down the
instantiations for the Pi-bound metavariables.
Instead of a type, you can use _ to indicate that this type annotation
should be uniquely inferrable given the goal type and the other specified
annotations. It is not uncommon to use suffices by i toshow _.

Tip

suffices eliminates both explicit and implicit leading Pi-types via
unification. It can sometimes be simpler to manually eliminate leading
explicit Pi-types via partial application:
suffices by i [C] ... toshow
When explicit Pi-types are manually eliminated, the need for a full type
annotation is less common.

On success, one subgoal is generated for each tau_i, and the current subgoal
is removed.

In principle, this command is redundant with solve because one could just
write solve EXP to invoke the lemma directly, but this can be quite
unwieldy if the arguments to the lemma are complicated. Furthermore, the
arguments would need to be written as Beluga terms rather than interactively
constructed.

Note

The user-provided type annotations TAU... are allowed to refer to
metavariables marked (not in scope).
However, it is an error if an out-of-scope metavariable appears in the
instantiation for an explicitly Pi-bound metavariable.

actions capabilities.

	Current limitations:

	
	no paramater variables

	no substitution variables

	no case splits (>1 case produced)

	no pair type

	no splitting on contexts

auto-invert-solve

This automation attempts to solve the subgoal if no variable splitting (other than inversions) is required to solve
the goal. It performs 2 iterations of depth-first proof-search, once on the computation level, and
once again on the LF level. Use auto-invert-solve INT to specify the maximum depth
you want your search tree to reach. Depth is incremented when we attempt to
solve a subgoal.

For example, if we want to solve Ev [|- S (S (S (S z)))] this would require
a depth bound of at least 2::

inductive Ev : [⊢ nat] → ctype =
 | ZEv : Ev [⊢ z]
 | SEv : Ev [⊢ N] → Ev [⊢ S (S N)]

depth = 0
solve for Ev [|- S (S (S (S z)))] -> focus on SEv --->

depth = 1
solve for Ev [|- S (S z)] -> focus on SEv --->

depth = 2
solve for Ev [|- z] -> focus on zEv

Note: If a goal has more than one subgoal, depth only increments by 1.

For example, if we want to solve ``Less_Than [|- S z] [|- S (S (S z))]`` this
would require depth bound of 3:

inductive Less_Than : [⊢ nat] → [⊢ nat] → ctype =
 | ZLT : Less_Than [⊢ z] [⊢ S N]
 | LT : Less_Than [⊢ N] [⊢ M] → Less_Than [⊢ S N] [⊢ S M]
 | Trans_LT : Less_Than [⊢ N] [⊢ M]
 → Less_Than [⊢ M] [⊢ K] → Less_Than [⊢ N] [⊢ K]

depth = 0
solve for Less_Than [|- S z] [|- S (S (S z))] -> focus on Trans_LT --->

 depth = 1
 solve for Less_Than [|- M] [|- S (S (S z))] -> focus on LT --->

 depth = 2
 solve for Less_Than [|- M'] [|- S (S z)] -> focus on LT --->

 depth = 3
 solve for Less_Than [|- M''] [|- S z] -> focus on ZLT

 ---> found LT LT ZLT : Less_Than [|- S (S z)] [|- S (S (S z))]

 depth = 1
 solve for Less_Than [|- S z] [|- S (S z)] -> focus on LT --->

 depth = 2
 solve for Less_Than [|- z] [|- S z] -> focus on ZLT

 ---> found LT ZLT : Less_Than [|- S z] [|- S (S z)]

-> found Trans_LT (LT ZLT) (LT LT ZLT) : Less_Than [|- S z] [|- S (S (S z))]

inductive-auto-solve

This automation will perform a case split on the user-specified variable then call auto-invert-solve on each sub case. Use inductive-auto-solve INT to specify the maximum depth you want your search tree to reach. Depth is incremented as above.

Undo

Harpoon includes an undo command to revert previous actions. Undo history is
stored on a per-theorem basis, so ensure that the correct theorem is selected
when executing undo.
Only commands that effect a change to the subgoal list can be
undone. Concretely, this means that Administrative tactics cannot be
undone, since they do not introduce nor eliminate subgoals.

Harpoon also includes a command redo that will undo the effect of the last undo
command. If a change to the subgoal list is effected, the redo history is
purged. In other words, the history is stored linearly and no “undo tree”
is available.

To see the state of the history, use the history command. This will show the
history of commands that can be undone as well as whether any commands that can
be redone.

Limitations

Undo cannot undo things such as creating new sessions. It also cannot undo the
command that completes a proof, as beyond that point there is no more
subgoal prompt through which the user could type undo.

Serializing the current Harpoon state will also cause the undo history to be
lost. This is because serialization will cause Harpoon to reload all state from
the signature. From Harpoon’s point of view, the list of subgoals it then has
comes simply from the signature, not from a history of tactics.

To work around these limitations, we currently suggest manually undoing the
offending actions by editing the proof script.

Index

 This document outlines Beluga’s proof-search engine. The code can be found in src/core/logic.ml.

There are 2 parts to proof search for Beluga’s logic: an outer search loop that performs proof search over the computation types, and an inner loop, that performs LF proof search. In src/core/logic.ml, there are respectively 2 functions that perform these searches. cgSolve (outer) and gSolve (inner).

cgSolve

Performs a bounded-depth-first focused search over atomic (box and inductive/stratified), arrow, and universal computation types. This loop iterates through a deterministic phase (uniform left and right) and several non-deterministic phases (lemma application/blurring, focusing, splitting/induction). The loop will end when all branches of the tree have been exhausted or a proof is found. A depth bound is given to the loop, and depth is incremented when we switch to solving the precondition(s) of a goal.

	Limitations:

	
	incomplete support for parameter and substitution variables

	Issues:

	
	incorrect I.H. generation
- on occassion, one or more incorrect I.H. are generated
- will cause issues during induction hypothesis application
- found to be an issue when the inductive argument is nested in the theorem (i.e. not the leftmost univerally quantified arg or leftmost argument in an implication)

	there are two lists that keep track of the (meta-)variables that have been, or have yet to be split on (cG_a and cD_a). These lists get updated after a split has been made. Currently, the cD_a does not get updated correctly, as there is no way (that I have found) to know which meta-variables are explicit in the new generated cD. Adding all new meta-variables will cause type check errors in the final program, if an implict meta-variable get split on. To prevent this, it is currently taking an incomplete list of the new explicit variables that get introduced during a split. This causes some proofs to fail automatically (ex. t/harpoon/nats_and_bools_auto_invert.input)

	when a split on a box type is made, the case pattern uses as its LF context the dctx_hat (instead of dctx). As an example, if the dctx is (g, x : term) then the dctx_hat becomes something like (g, x1) and when type reconstruction happens, it thinks x1 is the dctx and because (x1: _) is more general than (x: term) it causes an error. This must be fixed when we print the proof term to the file. We must take the dctx instead of the dctx_hat. I believe the issue has been previously recorded here: https://github.com/Beluga-lang/Beluga/issues/231

	Future Work:

	
	add a blurring/lemma application phase over theorems

gSolve

Performs a bounded depth-first focused search over LF types. Similarly as above, this loop iterates through a deterministic and non-deterministic phase (focusing). The loop will end when all branches of the tree have been exhausted or a proof is found. A depth bound is given to the loop, and depth is incremented when we switch to solving the precondition(s) of a goal. When called from the outer loop cgSolve, the bound is defaulted to 3, which is quite high but allows for most proofs to be found.

	Limitations:

	
	
	Incomplete solving of substitutions

	
	currently, we only look for substitutions in the meta-context

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Beluga/Harpoon user’s manual

 		
 Getting Started

 		
 Installation

 		
 Install using opam

 		
 Install from the source

 		
 Harpoon Example

 		
 Common elements

 		
 The Logical Framework LF

 		
 Basic example: natural numbers

 		
 HOAS example: lambda calculus

 		
 Contextual LF

 		
 Computation types

 		
 Metavariables

 		
 Context variables and schemas

 		
 Unboxing

 		
 LF Subordination

 		
 Strengthening

 		
 Inductive Types (stub)

 		
 Interactive Proving with Harpoon

 		
 Prover Structure

 		
 Session

 		
 Subgoal

 		
 Proof automation

 		
 auto-intros

 		
 auto-solve-trivial

 		
 auto-invert-solve

 		
 inductive-auto-solve

 		
 Interactive Command Reference

 		
 Administrative tactics

 		
 Proof tactics

 		
 auto-invert-solve

 		
 inductive-auto-solve

 		
 Undo

 		
 Limitations

_static/ajax-loader.gif

