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Beluga

Beluga is a language for encoding and reasoning about formal systems specified by inference rules, e.g. lambda calculi
and type systems. It uses contextual modal logic as its foundation. Object-language binding constructs are encoded
using higher-order abstract syntax. That is, functions are used to encode binders. Terms are paired with the contexts
in which they are meaningful to form contextual objects, enabling reasoning about open terms. Proofs in Beluga are
represented by recursive programs according to the Curry-Howard correspondence.

Harpoon is an interactive proof development REPL built on top of Beluga. Users develop proofs by successively
eliminating subgoals using a small, fixed set of tactics. Behind the scenes, the execution of tactics builds a proof script
that can be machine-translated into a traditional Beluga program.

The Beluga project is developed at the Complogic group at McGill university, led by Professor Brigitte Pientka. It is
implemented in OCaml.

Contents 1



Beluga

2 Contents



CHAPTER 1

Getting Started

1.1 Installation

We support only installation on macOS, Linux, and WSL.

Any of the following methods uses opam 2. Please ensure that you have that version of opam. You can find the
installation instruction here.

We use recent versions of OCaml, so check which are supported on our continuous integration before creating an opam
switch.

1.1.1 Install using opam

The following command will install beluga under the switch you created.

opam install beluga

Now beluga and harpoon binaries are installed in $OPAM_SWITCH_PREFIX/bin, and these command work:

beluga --help
harpoon --help

1.1.2 Install from the source

First, clone the repository.

git clone https://github.com/Beluga-lang/Beluga
cd Beluga

Now, build the source with the following commands:
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make setup-install
make install

This will place beluga and harpoon binaries in $OPAM_SWITCH_PREFIX/bin. They can be copied wherever
you like, or you can add this directory to your PATH environment variable.

1.2 Harpoon Example

You can try the following example to check Harpoon works:

LF tp : type =
| i : tp
| arr : tp -> tp -> tp

;

LF eq : tp -> tp -> type =
| eq_i : eq i i
| eq_arr : eq A1 A2 -> eq B1 B2 -> eq (arr A1 B1) (arr A2 B2)

;

First, save this code as a file tp-refl.bel. Next, run the following command to load the Harpoon session.

harpoon --sig tp-refl.bel

Here, --sig option represents a signature used for proofs. Now, Harpoon will print a session wizard:

## Type Reconstruction begin: tp-refl.bel ##
## Type Reconstruction done: tp-refl.bel ##
Configuring theorem #1

Name of theorem (:quit or empty to finish):

The session wizard will ask for the name of theorem, the actual statement, and the induction order. After giving
tp-refl, {A : [|- tp]} [|- eq A A], and 1, the session wizard will print this:

## Type Reconstruction begin: stlc.bel ##
## Type Reconstruction done: stlc.bel ##
Configuring theorem #1

Name of theorem (:quit or empty to finish): halts_step
Statement of theorem: [|- step M M'] -> [|- halts M'] -> [|- halts M]
Induction order (empty for none):

Configuring theorem #2
Name of theorem (:quit or empty to finish):

Users can give any numbers of theorems they want. Here, for the purpose of this example, we will finish the session
wizard, by typing the enter key. Then, Harpoon will display an interactive session:

Assumptions
Meta-assumptions:
A : ( |- tp)

are automatically introduced for the subgoal of type
{A : ( |- tp)} [ |- eq A A]

Theorem: tp-refl
intros

(continues on next page)
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(continued from previous page)

Meta-context:
A : ( |- tp)

Computational context:

--------------------------------------------------------------------------------
[ |- eq A A]

>

Now we can use interactive tactics to prove the goal (the type under the line). First, by applying split [|- A],
we split the type into cases.

Theorem: tp-refl
intros
Meta-context:

A : ( |- tp)
Computational context:

--------------------------------------------------------------------------------
[ |- eq A A]

> split [|- A]

This will generate two subgoals, and you will notice that the label (the string on the second line) is changed so that we
can see which subgoal we are in.

Theorem: tp-refl
intros <- split [ |- X1] (case arr)
Meta-context:

X : ( |- tp)
X1 : ( |- tp)

Computational context:

--------------------------------------------------------------------------------
[ |- eq (arr X X1) (arr X X1)]

>

To prove this, we need [|- eq X X] and [|- eq X1 X1]. We can get these by induction.

Theorem: tp-refl
intros <- split [ |- X1] (case arr)
Meta-context:

X : ( |- tp)
X1 : ( |- tp)

Computational context:

--------------------------------------------------------------------------------
[ |- eq (arr X X1) (arr X X1)]

> by tp-refl [|- X] as EQ_X unboxed

1.2. Harpoon Example 5
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Theorem: tp-refl
intros <- split [ |- X1] (case arr)
Meta-context:

X : ( |- tp)
X1 : ( |- tp)
EQ_X : ( |- eq X X)

Computational context:

--------------------------------------------------------------------------------
[ |- eq (arr X X1) (arr X X1)]

> by tp-refl [|- X1] as EQ_X1 unboxed

With these two, we are able to use eq_arr.

Theorem: tp-refl
intros <- split [ |- X1] (case arr)
Meta-context:

X : ( |- tp)
X1 : ( |- tp)
EQ_X : ( |- eq X X)
EQ_X1 : ( |- eq X1 X1)

Computational context:

--------------------------------------------------------------------------------
[ |- eq (arr X X1) (arr X X1)]

> solve [|- eq_arr EQ_X EQ_X1]

This will solve the subgoal, and Harpoon will subsequently show the next case, which can be solved directly with
eq_i.

Theorem: tp-refl
intros <- split [ |- FREE MVar 1] (case i)
Meta-context:

Computational context:

--------------------------------------------------------------------------------
[ |- eq i i]

> solve [|- eq_i]

After solving all subgoals, Harpoon will print the proof script as well as its translation as a Beluga program, and save
the proof script (You can check it by cat tp-refl.bel) and type-check the signature file again.

Subproof complete! (No subgoals left.)
Full proof script:

intros
{ A : ( |- tp)
|
; split [ |- A] as
case arr:
{ X : ( |- tp), X1 : ( |- tp)

(continues on next page)
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|
; by tp-refl [ |- X] as EQ_Y unboxed;

by tp-refl [ |- X1] as EQ_X unboxed;
solve [ |- eq_arr EQ_Y EQ_X]

}
case i:
{
|
; solve [ |- eq_i]
}

}
Translation generated program:

mlam A =>
case [ |- A] of
| [ |- arr X X1] =>
let [ |- EQ_Y] = tp-refl [ |- X] in
let [ |- EQ_X] = tp-refl [ |- X1] in [ |- eq_arr EQ_Y EQ_X]

| [ |- i] =>
[ |- eq_i]

No theorems left. Checking translated proofs.
- Translated proofs successfully checked.
Proof complete! (No theorems left.)
## Type Reconstruction begin: t/harpoon/tp-refl.bel ##
## Type Reconstruction done: t/harpoon/tp-refl.bel ##

Once the proof is completed, Harpoon will restart the session wizard, and we can choose whether to prove more
theorems or :quit.

Configuring theorem #1
Name of theorem (:quit or empty to finish): :quit

Harpoon terminated.

That’s it! If you want to know more details including how to write the signature file and what kinds of tactics do we
provide, please read the common elements and interactive proving with harpoon section of this page. For additional
examples, you can check out the test directory in our github repository.

1.2. Harpoon Example 7
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CHAPTER 2

Common elements

2.1 The Logical Framework LF

Languages are encoded for study in Beluga using the Logical Framework LF1. New syntactic categories are defined
using the LF toplevel definition, which defines a new LF (indexed) type together with its constructors.

2.1.1 Basic example: natural numbers

LF nat : type =
| zero : nat
| succ : nat -> nat

;

The first line defines a new simple LF type nat and the following lines define its constructors, zero and succ. The
number three is written succ (succ (succ zero)) in this encoding.

One can define relations on natural numbers by defining indexed types. For example, we can encode a less-than-equals
relation on nat as follows.

LF le : nat -> nat -> type =
| le_z : le zero N
| le_s : le N M ->

% ------------------
le (succ N) (succ M)

;

Terms of this type encode proofs. As a concrete example, a term of type le (succ zero) (succ (succ
zero)) would represent a proof that 1 is less than 2.

First, observe the presence of free variables M and N. Any free variable is automatically Pi-quantified at the very
front of the constructor being defined. Thus, the internal type of le_s is really {N : nat} {M : nat} le

1 TODO cite LF paper
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N M -> le (succ N) (succ M). (Beluga uses curly braces to write Pi-types.) We call such automatically
quantified variables implicit parameters. The types of implicit parameters are determined by type reconstruction. It
is not possible for the user to explicitly provide an instantiation for an implicit parameter. Instantiations for implicit
parameters are automatically found via unification, based on the types of provided arguments. In other words, when
one writes a term le_s Q for some argument proof Q, it is via the type of Q that the instantiations for N and M are
found.

Next, the rule le_s has been suggestively written with a commented line to illustrate that one would ordinarily write
this as an inference rule. In Beluga, we use LF declarations to uniformly represent the syntax and the inference rules
of object languages. (Semantic predicates about encodings are defined using Inductive Types.)

One can state a theorem about such an encoding using Contextual LF and one can prove them by writing a functional
program or interactively.

2.1.2 HOAS example: lambda calculus

Beluga is a domain-specific language for reasoning about formal systems, and one of the simplest such systems is
the lambda calculus. Unlike in the natural numbers, lambda-terms contain binders. The philosophy of LF is to
represent binders using higher-order abstract syntax (HOAS). That is, the functions of the metalanguage (LF) are used
to represent the binding structure of the object-language (lambda calculus). Here is how we define untyped lambda
terms using HOAS.

LF tm : type =
| lam : (tm -> tm) -> tm
| app : tm -> tm -> tm

;

One immense benefit of HOAS is that the object-language inherits the substitution properties of the metalanguage. In
practice, this means that one needs not define substitution, but rather simply use LF function application. For example,
consider the following encoding of a small-step, call-by-name operational semantics for the lambda calculus.

LF step : tm -> tm -> type =
| e_app : step M M' ->

% -----------------------
step (app M N) (app M' N)

| beta : step (app (lam M) N) (M N)
;

First, observe that step is not a simple type. It is indexed by two terms, so we understand it as a binary relation
between terms.

Finally, the rule beta demonstrates HOAS in action. We use LF function application to implement the beta reduction
of the lambda calculus. The type of the variable M in this constructor is inferred by type reconstruction as tm -> tm,
given that it appears as the first argument to the constructor lam.

To complete the example encoding of the lambda calculus, we will now turn our attention to a simple type assignment
system for this language. First, we will define the syntax of types.

LF tp : type =
| base : tp
| arr : tp -> tp -> tp

;

Second, we define the typing judgment as an indexed type. In this case, we understand oft as relating a term tm to a
type tp.
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LF oft : tm -> tp -> type =
| t_app : oft M (arr A B) -> oft N A ->

% ---------------------------
oft (app M N) B

| t_lam : ({x : tm} oft x A -> oft (M x) B) ->
% ----------------------------------
oft (lam M) (arr A B)

;

We will concentrate on the rule t_lam. Here, the variable M is understood as the body of the lambda-abstraction, and
it has type tm -> tm. The premise of this rule reads “for any term x, if x is of type A, then M x is of type B”. This
precisely captures the parametric reasoning used on paper when proving that a lambda-abstract has an arrow-type.
Here it is necessary to explicitly write a Pi-type for x as leaving it implicit would have it incorrect quantified at the
level above.

To reason about these definitions, one would formulate a theorem and prove it. Theorems are stated and proven in
Beluga’s computation language. Whereas LF is used as a metalanguage for encoding various formal systems, Beluga’s
computation language is used as a metalanguage for Contextual LF. To prove a theorem, one either writes a functional
program in Beluga or uses Harpoon.

2.2 Contextual LF

In contrast with languages such as Coq or Agda that feature full dependent types, Beluga has an indexed type system.
This is a restricted form of dependent types in which one quantifies only over a specific index domain. The index
domain of Beluga is Contextual LF.

At a high level, a Contextual LF object (or type) is an LF term (or type) together with an LF context in which the
term (or type) makes sense. For example, consider the following syntax of types for the simply-typed lambda calculus
together with a structural equality relation on types.

LF tp : type =
| base : tp
| arr : tp -> tp -> tp

;

LF eq : tp -> tp -> type =
| eq_base : eq base base
| eq_arr : eq A1 A2 -> eq B1 B2 ->

% ------------------------
eq (arr A1 B1) (arr A2 B2)

;

The contextual object that encodes a closed proof that the base type is equal to the base type is |- eq_base. We
write this sometimes with parentheses to make reading easier, e.g. ( |- eq_base ).

Open terms can be represented by using a nonempty LF context. For example,

x : eq A B |- eq_arr x eq_base

is a contextual object of type x : eq A B |- eq (arr A base) (arr B base).

2.2. Contextual LF 11
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2.2.1 Computation types

Contextual LF objects and types may be boxed into computation types. These types are primarily used for encoding
theorems about a formal system. For example, the type of a theorem expressing that equality is reflexive would be

{A : |- tp} [ |- eq A A]

We read this as “for all (closed) types A , A is equal to itself.” This is a computation type. It is composed of two
parts in this example: a PiBox-type and a box-type. The PiBox is used as a quantifier; we will go into more depth on
this in the following section. The syntax [ |- eq A A ] is a boxed contextual type: any contextual type may be
surrounded by a box [ ] to embed it as a base computation type. Similarly, contextual objects may be boxed to form
computation expressions.

Another example theorem trans, that equality is transitive, can be expressed as

[ |- eq A B] -> [ |- eq B C] -> [ |- eq A C]

Similar to in a pure LF type (see here), free metavariables appearing in a computation type are automatically abstracted
over using PiBox at the front. So really, the above example type is elaborated into

{A : |- tp} {B : |- tp} {C : |- tp}
[ |- eq A B] -> [ |- eq B C] -> [ |- eq A C]

But again as in a pure LF type, these quantifiers are implicit and there is no way for a programmer to explicitly supply
an instantiation for them. The instantiations are found when the theorem trans is used.

This example illustrates the simple function space, written with the arrow ->. In Beluga, the dependent function space
(using the PiBox syntax) is separate from the simple function space (using the arrow syntax).

To recap, the formal grammar of computation types is the following.

where B denotes an inductive type and U denotes a contextual type. The remaining two forms are the simple and
dependent function space, respectively.

2.2.2 Metavariables

The syntax {A : |- tp} ... expresses what’s called a PiBox-type. This example quantifies over the contextual
type |- tp and binds A as a metavariable. Whenever a metavariable is used, as A is used for example in eq A A,
it is given a substitution. This substitution mediates between the LF context of the metavariable and the LF context
at the use site. If no explicit substitution is provided, an identity substitution is assumed. An identity substitution is
sufficient in the example because the context of both the metavariable and its use site is the empty context.

For example, suppose we have the metavariable X : (x : tm, y : tm |- tp). (Perhaps X refers to x, y
|- arr x y.) Then, X[base, base] : |- tp. Here we use an explicit substitution to instantiate the bound
variables x and y.

2.2.3 Context variables and schemas

Beluga provides a mechanism for abstracting over and quantifying over contexts. An abstract context is referred to by
a context variable. A context variable is a special form of metavariable.

Whereas kinds classify types, contexts are classified by schemas. A schema essentially lists the possible types of the
variables occurring in the context. The following declaration defines a schema ctx that can contain only types.

schema ctx = tp;

12 Chapter 2. Common elements
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Before we can elaborate an example demonstrating context variables, first consider the following syntax of terms for
the simply typed lambda calculus as well as a typing judgment for this language.

LF tm : type =
| app : tm -> tm -> tm
| lam : tp -> (tm -> tm) -> tm

;

LF oft : tm -> tp -> type =
| t_app : oft M (arr A B) -> oft N A ->

% ---------------------------
oft (app M N) B

| t_lam : ({x : tm} oft x A -> oft (M x) B) ->
% ----------------------------------
oft (lam A M) (arr A B)

This syntax of terms includes a type annotation on lambda abstractions, and the typing judgment ensures that it is the
type given in the annotation that is used as the parameter x’s type in the premise of the t_lam rule.

This language admits type uniqueness. That is, given two typing derivations for the same term, the types assigned to
that term must be equal. We can state this theorem as a computation type in Beluga as follows.

(g : ctx) [g |- oft M A1[]] -> [g |- oft M A2[]] -> [|- eq A1 A2]

First, notice the syntax (g : ctx) .... This is called implicit context quantification. Unlike for ordinary im-
plicit metavariables such as M, the schema of an implicit context variable cannot be inferred by type reconstruction.
Therefore, one must use implicit context quantification to explicitly specify the schema of the context variable.

Second, notice that the metavariables A1 and A2, referring to types, are associated with the substitution [] in the
assumptions of the theorem. Type reconstruction is in some sense a greedy algorithm, so had these substitutions been
left out, the type of A1, upon appearing in g |- oft M A1, would be g |- tp. But this makes no sense because
types ought to be closed in the simply-typed lambda calculus. To specify that the metavariables A1 and A2 must be
closed, we associate them with a weakening substitution []. This way, type reconstruction will correct infer that the
context of these metavariables is empty.

Confusingly, the reported error had the weakening substitutions been omitted would be relating to the occurrences of
A1 and A2 in |- eq A1 A2. Here, the implicit identity substitution would be ill-typed. Recall that the type of A1,
for instance, would have been inferred as g |- tp and the identity subsitution would need to send the metavariable’s
context g to the empty context, which it does not. In general, when dealing with ill-typed substitution errors, it is worth
paying close attention to every occurrence of any relevant metavariables.

2.2.4 Unboxing

When one has a computational variable referring of a boxed contextual type, one frequently likes to promote this
variable to a metavariable. This process is called unboxing. For example, suppose we have the assumption x :
[|- tp].

• In Beluga, one writes let [_ |- X] = x in ... in order to unbox x as the metavariable X.

• In Harpoon, one uses the unbox tactic for this: unbox x as X.

2.3 LF Subordination

LF declarations in Beluga may or may not refer to earlier declarations. Therefore, it is possible to ascertain that certain
derivations cannot depend on certain contextual assumptions, and to eliminate these assumptions. As a concrete

2.3. LF Subordination 13



Beluga

example, consider this signature.

LF unit1 : type =
| u1 : unit1

;

LF unit2 : type =
| u2 : unit2

;

schema ctx = block a1 : unit1, a2 : unit2 ;

The schema ctx consists of blocks (pairs) consisting of a unit1 and a unit2. Now suppose we have a derivation of
type g, b : block a1 : unit1, a2 : unit2 |- unit1where g : ctx. This derivation builds
a unit1, and by looking at the definition of that type, we can see that there is no way any unit2 could be involved
in the construction of that derivation.

2.3.1 Strengthening

Beluga recognizes as legitimate any program that would drop such irrelevant assumptions: this is called strengthening.
In Harpoon this is accomplished by using the strengthen tactic. In a Beluga program, one uses pattern matching
together with an explicit substitution that witnesses the strengthening. Suppose in the below example that x : [g,
b : block a1 : unit1, a2 : unit2 |- unit1]. To strengthen this, one would use a construction
as follows.

let [g, b : block a1 : unit1, a2 : unit2 |- X[.., b.1]] = x in ...

The synthesized type for X would be g, x1 : unit1 |- unit1. This is somewhat confusing because the
substitution that witnesses the strengthening here is in fact a substitution that weakens X.

Beluga’s subordination analysis over the loaded signature accounts for transitive dependencies between LF declara-
tions. Beluga will consider strengthening notably during coverage checking as well as when synthesizing the type of
unknowns, written as _ in LF terms.

2.4 Inductive Types

Attention: This page is a stub.
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CHAPTER 3

Interactive Proving with Harpoon

Harpoon is an interactive prover for Beluga. Users of Harpoon develop proofs in a REPL using a small set of built-in
tactics. These correspond to the main proof strategies one uses in developing metatheory proofs, e.g. inversion or
appeal to a lemma or induction hypothesis.

3.1 Prover Structure

Harpoon is structured in a hierarchical fashion: the prover maintains a number of sessions, each contains a number
of theorems, each of which contains a number of subgoals. A theorem with no subgoals remaining is complete, and
similarly, a session with no theorems remaining is complete.

3.1.1 Session

Harpoon organizes a set of mutually inductive theorems into a session. Often, there is only one session at a time in
Harpoon, but more than one simultaneous session is possible. For example, you might want to start a second session
if you decide to prove a lemma while in the middle of another proof.

Changing sessions

One can switch between theorems by using the select command. Selecting a theorem belonging to another session
will cause a session switch, which is a somewhat delicate process.

In order to prevent incomplete theorems in different sessions from referring to each other, all theorems belonging to
other sessions are not in scope. When switching sessions, the theorems in the active session are moved out of scope,
and the theorems in the destination session are brought into scope. Crucially, this is to prevent undesirable circularities
between theorems.

It is important to be aware of this limitation, as it means that lemmas must be proven before they can be used.

15
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Session configuration wizard

The series of interactive prompts that appear when Harpoon is started is called the session configuration wizard.
This wizard appears when there are no sessions in the prover, and unless there were incomplete proofs in the loaded
signature, there will be no sessions when Harpoon starts.

The wizard prompts for three things about each theorem:

1. The name of the theorem. This is how the theorem is referred to for induction hypotheses, and how other
theorems can refer to this theorem.

2. The statement of the theorem. This is a Beluga computational type. (See Contextual LF.)

3. The induction order of the theorem. Non-inductive theorems can simply leave this blank. Inductive theorems
specify the order numerically, by giving the position of the parameter to induct on. Only explicit parameters are
counted, and counting proceeds from left to right.

Note: Implicit context quantifiers are not counted for the numeric induction order. That is, in

(g : ctx) [g |- oft M A] -> [g |- step M M'] -> [g |- oft M' A]

the position of the parameter of type [g |- step M M'] is still 2.

For example, here is how one might configure a type preservation proof for the simply-typed lambda calculus.

Name of theorem: tps
Statement of theorem: [|- oft M A] -> [|- step M M'] -> [|- oft M' A]
Induction order: 2

Once a theorem is configured, the wizard will repeat so you can configure additional theorems to be proven mutually.
To end the wizard, use an empty theorem name or the special name :quit. Ending the wizard without configuring
any theorems will abort the creation of the new session. If there are no other sessions in Harpoon, then Harpoon will
exit.

Loading goals from a file

Harpoon proofs are recorded into signature files as a proof script. This is a structured language whose core constructs
close resembles the syntax of Proof tactics, which the following section in this document will describe. In a signature
file, a proof named foo is declared as follows.

proof foo : tau = P;

where tau is a computation type and P is the body of the proof.

However, when a proof script is saved back using session commands, this P contains some subgoals left. When
harpoon loads a signature file with such incomplete proofs, harpoon will load the proofs into a session so that a user
doesn’t need to repeat the session wizard. It is still possible to open the session wizard using session commands in a
case when a user want to use it to start a new proof.

3.1.2 Subgoal

Proofs are developed by applying a tactic to a subgoal. If the tactic is successful, the subgoal it is applied to is solved
and removed from its theorem. New subgoals may be introduced by the tactic. These subgoals are understood as
children of the subgoal that was eliminated.

16 Chapter 3. Interactive Proving with Harpoon
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Subgoal prompt

To apply a tactic, one types the corresponding command into the subgoal prompt. This prompt is the main point of
interaction with Harpoon. Consider this example subgoal prompt from the beginning of a type preservation proof for
the simply-typed lambda calculus.

intros
Meta-context:

M : ( |- tm) (not in scope)
A : ( |- tp) (not in scope)
M' : ( |- tm) (not in scope)

Computational context:
x : [ |- oft M A]
x1 : [ |- step M M']

-------------------------------
[ |- oft M' A]

>

The subgoal prompt shows the prover state at the subgoal. This state contains three key pieces of information.

1. The subgoal label. Every subgoal in Harpoon is identified by a subgoal label. This label indicates where in the
proof this subgoal is located. In the example, the label is intros at the very top, and demonstrates that this
subgoal is right after having introduced the assumptions of the theorem.

2. The contexts. Harpoon uses Beluga’s indexed type system in which one distinguishes between metavariables
and computational variables. Metavariables belong to the meta-context and computational variables belong to
the computational context. Notice that the metavariables in the example are all marked (not in scope).
This annotation is presented for implicit parameters: recall that in the statement of the theorem, the parameters
M, A and M' appeared free.

3. The goal. Below the line, the type of the subgoal appears. As tactics are applied and new subgoals are intro-
duced, one can expect the goal type to change. Broadly speaking, one’s objective is to construct a term of this
type.

Administrative tactics

There are a number of tactics in Harpoon that do not contribute directly to the development of the proof, but are
used to manipulate the state of the prover. To distinguish these from the proof tactics, we call these administrative
tactics. Despite not contributing to the development of the proof, administrative tactics are nonetheless entered into
the subgoal prompt.

See here for the complete list of administrative tactics.

3.2 Proof automation

Harpoon provides rudimentary automation for basic tasks during proofs. Each automation type can be controlled via
the toggle-automation tactic.

Automations run at the moment that a new subgoal is created.

Actions performed by automatic tactics can be undone.
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3.2.1 auto-intros

This automation introduces assumptions into the context whenever the subgoal has a function type.

3.2.2 auto-solve-trivial

This automation solves subgoals in which the context contains an assumption whose type is convertible with goal type.

It will never solve the last remaining subgoal in a theorem, as this makes certain theorems impossible to prove using
Harpoon. For example, this is essential for implementing a function such as double : [|- nat] -> [|-
nat]: auto-intros will bring x : [|- nat] into the context and auto-solve-trivial would imme-
diately finish the theorem before the user ever sees a subgoal prompt.

actions capabilities.

Current limitations:

• no paramater variables

• no substitution variables

• no case splits (>1 case produced)

• no pair type

• no splitting on contexts

3.2.3 auto-invert-solve

This automation attempts to solve the subgoal if no variable splitting (other than inversions) is required to solve the
goal. It performs 2 iterations of depth-first proof-search, once on the computation level, and once again on the LF
level. Use auto-invert-solve INT to specify the maximum depth you want your search tree to reach. Depth
is incremented when we attempt to solve a subgoal.

For example, if we want to solve Ev [|- S (S (S (S z)))] this would require a depth bound of at least 2::

inductive Ev : [ nat] → ctype =
| ZEv : Ev [ z]
| SEv : Ev [ N] → Ev [ S (S N)]

depth = 0
solve for Ev [|- S (S (S (S z)))] -> focus on SEv --->

depth = 1
solve for Ev [|- S (S z)] -> focus on SEv --->

depth = 2
solve for Ev [|- z] -> focus on zEv

Note: If a goal has more than one subgoal, depth only increments by 1.

For example, if we want to solve ``Less_Than [|- S z] [|- S (S (S z))]`` this
would require depth bound of 3:

inductive Less_Than : [ nat] → [ nat] → ctype =
| ZLT : Less_Than [ z] [ S N]
| LT : Less_Than [ N] [ M] → Less_Than [ S N] [ S M]
| Trans_LT : Less_Than [ N] [ M]

(continues on next page)
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(continued from previous page)

→ Less_Than [ M] [ K] → Less_Than [ N] [ K]

depth = 0
solve for Less_Than [|- S z] [|- S (S (S z))] -> focus on Trans_LT --->

depth = 1
solve for Less_Than [|- M] [|- S (S (S z))] -> focus on LT --->

depth = 2
solve for Less_Than [|- M'] [|- S (S z)] -> focus on LT --->

depth = 3
solve for Less_Than [|- M''] [|- S z] -> focus on ZLT

---> found LT LT ZLT : Less_Than [|- S (S z)] [|- S (S (S z))]

depth = 1
solve for Less_Than [|- S z] [|- S (S z)] -> focus on LT --->

depth = 2
solve for Less_Than [|- z] [|- S z] -> focus on ZLT

---> found LT ZLT : Less_Than [|- S z] [|- S (S z)]

-> found Trans_LT (LT ZLT) (LT LT ZLT) : Less_Than [|- S z] [|- S (S (S z))]

3.2.4 inductive-auto-solve

This automation will perform a case split on the user-specified variable then call auto-invert-solve on each sub case.
Use inductive-auto-solve INT to specify the maximum depth you want your search tree to reach. Depth is
incremented as above.

3.3 Interactive Command Reference

• Administrative tactics

– undo

– redo

– history

– theorem list

– theorem defer

– theorem show-ihs

– theorem dump-proof PATH

– theorem show-proof

– session list

– session defer
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– session create

– session serialize

– save

– subgoal list

– subgoal defer

– select

– rename

– toggle-automation

– type

– info

• Proof tactics

– intros

– split

– msplit

– invert

– impossible

– by

– unbox

– strengthen

– solve

– suffices

• auto-invert-solve

• inductive-auto-solve

3.3.1 Administrative tactics

Administrative tactics are used to navigate the proof, obtain information about functions or constructors, or to prove a
lemma in the middle of another proof.

undo

Undoes the effect of a previous proof tactic. See Undo.

redo

Undoes the effect of a previous undo. See Undo.

20 Chapter 3. Interactive Proving with Harpoon



Beluga

history

Displays the undo history. See Undo.

theorem list

Lists all theorems in the current session.

theorem defer

Moves the current theorem to the bottom of the theorem stack, selecting the next theorem.

See select for a more flexible way to select a theorem.

theorem show-ihs

Display the induction hypotheses available in the current subgoal.

Note: This is a debugging command, and the output is not particularly human-readable.

theorem dump-proof PATH

Records the current theorem’s partial proof to PATH.

theorem show-proof

Displays the current theorem’s partial proof.

session list

Lists all active sessions together with all theorems within each session.

session defer

Moves the current session to the bottom of the session stack and selects the next one.

See select for a more flexible way to select a theorem.

session create

Creates a new session. This command will start the Session configuration wizard for setting up the theorems in the
new session.

session serialize

Saves the current session as partial proofs to the signature. In other words, any work done interactively will be reflected
back into the loaded signature.
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save

This command is a shortcut for session serialize.

subgoal list

Lists all remaining subgoals in the current theorem.

subgoal defer

Moves the current subgoal to the bottom of the subgoal stack and selects the next one.

select

select NAME selects a theorem by name for proving. See the session list command.

Note: When selecting a theorem from another session, be aware of the consequences this has on scoping. See
Changing sessions.

rename

Note: Renaming is poorly supported at the moment.

The resulting Harpoon proof script that is generated by interactive proving will not contain the renaming, and this
could lead to accidental variable capture.

Renames a variable. Use rename meta SRC DST to rename a metavariable and rename comp SRC DST to
rename a program variable.

toggle-automation

Use toggle-automation AUTO [STATE] to change the state of proof automation features. See Proof automa-
tion for available values for AUTO.

Valid values for STATE are on, off, and toggle. If unspecified, STATE defaults to toggle.

type

Use type EXP to display the computed type of the given synthesizable expression EXP.

info

Use info KIND OBJ to get information on the KIND named OBJ.

Valid values for KIND are

• theorem: displays information about the Beluga program or Harpoon proof named OBJ.
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3.3.2 Proof tactics

intros

Use intros [NAME...] to introduce assumptions into the context.

Restrictions:

• The current goal type is either a simple or dependent function type.

For Pi-types, the name of the assumption matches the name used in the Pi. For arrow-types, names will be taken from
the given list of names, in order. If no names are given explicitly, then names are automatically generated.

On success, this tactic will replace the current subgoal with a new subgoal in which the assumptions are in the context.

Note: It is uncommon to use this tactic directly due to automation.

split

Use split EXP to perform case analysis on the synthesizable expression EXP.

Restrictions:

• The expression EXP and its synthesized type may not contain uninstantiated metavariables.

On success, this tactic removes the current subgoal and introduces a new subgoal for every possible constructor for
EXP.

msplit

Use msplit MVAR to perform case analysis on the metavariable MVAR.

This command is syntactic sugar for split [_ |- MVAR].

invert

Use invert EXP to perform inversion on the synthesizable expression EXP. This is the same as using split EXP,
but invert will check that a unique case is produced.

impossible

Use impossible EXP to eliminate the uninhabited type of the synthesizable expression EXP. This is the same as
using split EXP, but impossible will check that zero cases are produced.

by

Use by EXP as VAR [MODIFIER] to invoke a lemma or induction hypothesis represented by the synthesizable
expression EXP and bind the result to the name VAR. The optional parameter MODIFIER specifies at what level the
binding occurs.

Valid values for MODIFIER are

• boxed (default): the binding is made as a computational variable.
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• unboxed: the binding is made as a metavariable.

• strengthened: the binding is made as a metavariable, and its context is strengthened according to LF Sub-
ordination.

Restrictions:

• The defined variable VAR must not already be in scope.

• EXP and its synthesized type may not contain uninstantiated metavariables.

• (For unboxed and strengthened only.) The synthesized type must be a boxed contextual object.

On success, this tactic replaces the current subgoal with a subgoal having one additional entry in the appropriate
context.

Tip: LF terms whose contexts contain blocks are not in principle eligible for strengthening. But such a context
is equivalent to a flat context, and Beluga will automatically flatten any blocks when strengthening. Therefore,
strengthened has a secondary use for flattening.

unbox

The command unbox EXP as X is syntactic sugar for by EXP as X unboxed. See also by.

strengthen

The command strengthen EXP as X is syntactic sugar for by EXP as X strengthened. See also by.

solve

Use solve EXP to complete the proof by providing an explicit checkable expression EXP.

Restrictions:

• The expression EXP must check against the current subgoal’s type.

On success, this tactic removes the current subgoal, introducing no new subgoals.

suffices

Use suffices by EXP toshow TAU... to reason backwards via the synthesizable expression EXP by con-
structing proofs for each type annotation TAU.

This command captures the common situation when a lemma or computational constructor can be used to complete a
proof, because its conclusion is (unifiable with) the subgoal’s type. In this case, it suffices to construct the arguments
to the lemma or constructor.

The main restriction on suffices is that the expression EXP must synthesize a type of the form

{X1 : U1} ... {Xn : Un} tau_1 -> ... -> tau_k -> tau

Thankfully, this is the most common form of type one sees when working with Beluga.

Restrictions:

• The expression EXP must synthesize a compatible type, as above.
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• Its target type tau must unify with the current goal type.

• Each type tau_i must unify with the i th type annotation given in the command.

• After unification, there must remain no uninstantiated metavariables.

Tip: Sometimes, not all the type annotations are necesary to pin down the instantiations for the Pi-bound metavari-
ables. Instead of a type, you can use _ to indicate that this type annotation should be uniquely inferrable given the
goal type and the other specified annotations. It is not uncommon to use suffices by i toshow _.

Tip: suffices eliminates both explicit and implicit leading Pi-types via unification. It can sometimes be simpler to
manually eliminate leading explicit Pi-types via partial application: suffices by i [C] ... toshow ....
When explicit Pi-types are manually eliminated, the need for a full type annotation is less common.

On success, one subgoal is generated for each tau_i, and the current subgoal is removed.

In principle, this command is redundant with solve because one could just write solve EXP to invoke the lemma
directly, but this can be quite unwieldy if the arguments to the lemma are complicated. Furthermore, the arguments
would need to be written as Beluga terms rather than interactively constructed.

Note: The user-provided type annotations TAU... are allowed to refer to metavariables marked (not in
scope). However, it is an error if an out-of-scope metavariable appears in the instantiation for an explicitly Pi-
bound metavariable.

actions capabilities.

Current limitations:

• no paramater variables

• no substitution variables

• no case splits (>1 case produced)

• no pair type

• no splitting on contexts

3.3.3 auto-invert-solve

This automation attempts to solve the subgoal if no variable splitting (other than inversions) is required to solve the
goal. It performs 2 iterations of depth-first proof-search, once on the computation level, and once again on the LF
level. Use auto-invert-solve INT to specify the maximum depth you want your search tree to reach. Depth
is incremented when we attempt to solve a subgoal.

For example, if we want to solve Ev [|- S (S (S (S z)))] this would require a depth bound of at least 2::

inductive Ev : [ nat] → ctype =
| ZEv : Ev [ z]
| SEv : Ev [ N] → Ev [ S (S N)]

depth = 0
solve for Ev [|- S (S (S (S z)))] -> focus on SEv --->

depth = 1
(continues on next page)
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(continued from previous page)

solve for Ev [|- S (S z)] -> focus on SEv --->

depth = 2
solve for Ev [|- z] -> focus on zEv

Note: If a goal has more than one subgoal, depth only increments by 1.

For example, if we want to solve ``Less_Than [|- S z] [|- S (S (S z))]`` this
would require depth bound of 3:

inductive Less_Than : [ nat] → [ nat] → ctype =
| ZLT : Less_Than [ z] [ S N]
| LT : Less_Than [ N] [ M] → Less_Than [ S N] [ S M]
| Trans_LT : Less_Than [ N] [ M]

→ Less_Than [ M] [ K] → Less_Than [ N] [ K]

depth = 0
solve for Less_Than [|- S z] [|- S (S (S z))] -> focus on Trans_LT --->

depth = 1
solve for Less_Than [|- M] [|- S (S (S z))] -> focus on LT --->

depth = 2
solve for Less_Than [|- M'] [|- S (S z)] -> focus on LT --->

depth = 3
solve for Less_Than [|- M''] [|- S z] -> focus on ZLT

---> found LT LT ZLT : Less_Than [|- S (S z)] [|- S (S (S z))]

depth = 1
solve for Less_Than [|- S z] [|- S (S z)] -> focus on LT --->

depth = 2
solve for Less_Than [|- z] [|- S z] -> focus on ZLT

---> found LT ZLT : Less_Than [|- S z] [|- S (S z)]

-> found Trans_LT (LT ZLT) (LT LT ZLT) : Less_Than [|- S z] [|- S (S (S z))]

3.3.4 inductive-auto-solve

This automation will perform a case split on the user-specified variable then call auto-invert-solve on each sub case.
Use inductive-auto-solve INT to specify the maximum depth you want your search tree to reach. Depth is
incremented as above.

3.4 Undo

Harpoon includes an undo command to revert previous actions. Undo history is stored on a per-theorem basis, so
ensure that the correct theorem is selected when executing undo. Only commands that effect a change to the subgoal
list can be undone. Concretely, this means that Administrative tactics cannot be undone, since they do not introduce
nor eliminate subgoals.
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Harpoon also includes a command redo that will undo the effect of the last undo command. If a change to the subgoal
list is effected, the redo history is purged. In other words, the history is stored linearly and no “undo tree” is available.

To see the state of the history, use the history command. This will show the history of commands that can be
undone as well as whether any commands that can be redone.

3.4.1 Limitations

Undo cannot undo things such as creating new sessions. It also cannot undo the command that completes a proof, as
beyond that point there is no more subgoal prompt through which the user could type undo.

Serializing the current Harpoon state will also cause the undo history to be lost. This is because serialization will cause
Harpoon to reload all state from the signature. From Harpoon’s point of view, the list of subgoals it then has comes
simply from the signature, not from a history of tactics.

To work around these limitations, we currently suggest manually undoing the offending actions by editing the proof
script.
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